PMI CTT Symposium Promoting Best Practices from Novice to Expert

Software Implementation How can a Project Manager Increase the Odds of Success Kitchener, October 23, 2003 Fernando Santiago MBA PMP

What are your odds of success?

Horrific statistics on software projects (*)

- Only 16% of projects are successful
- Around 52% of projects are challenged (budget, time or features/functions)
- Around 31% of projects are cancelled before completion

What are your odds of success?

- In addition, when a PM is assigned to a project, the most-likely scenario:
 - The solution has already been selected
 - A budget has been negotiated/contracted
 - A timeframe expectation has been set
 - Key resources have been assigned

Presentation Objectives

- Define project success
- Discuss concept of process capability
- Apply process capability to implementation of software

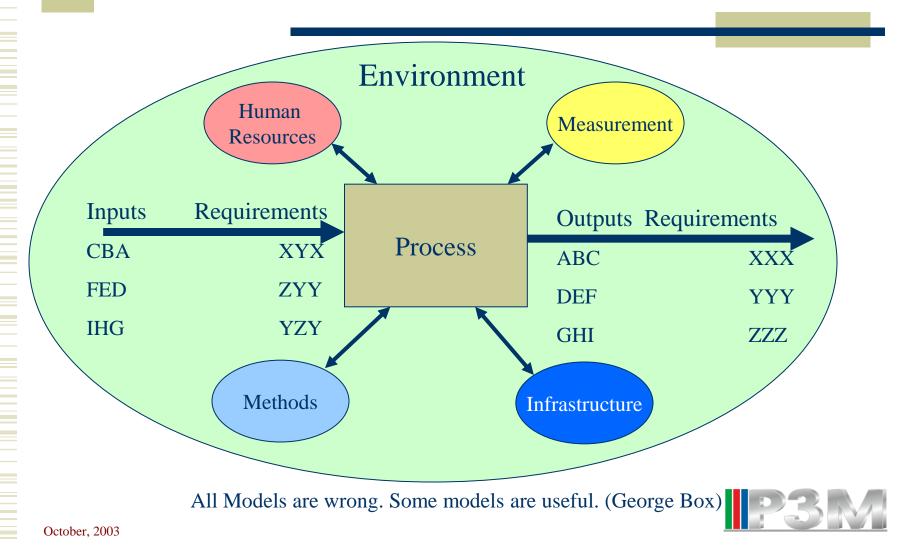
Presentation Scope

- Individual project delivery, not organizational project maturity:
 - CMM, OPM3, ISO 9000 oriented to organizational capability
 - Key concepts are still applicable at the project delivery level
- Focus on implementation of pre-built software solutions, not software development

- The obvious criteria:
 - Meets requirements for features and functions
 - Reasonably on-time
 - Reasonably on-budget
- The real success criteria:
 - Sponsor ("C" level) objectives for the project are met
 - Users "love" the application and use it
 - These two criteria not always come together

- Objectives for Implementation of Technology at the Sponsor Level:
 - Reduce operation or capital costs
 - Improve customer service to retain/increase customer base and increase sales
 - Respond to or prepare for growth
 - Replace obsolete technology (usually in combination with one of the above)

• Requirements at the end-user and IT level:


- Features and functions
- Ease of use
- Performance
- Flexibility
- Ease of integration, maintenance, etc.
- Not surprising that sponsors and users not always agree on project success

- A process approach to achieve project success:
 - Define the outputs of the process
 - Define the requirements for each output
 - Define a process that is capable of meeting these requirements
- Process Capability: Common theme to CMM, ISO 9000

Model for Process Capability

Concept of Process Capability

- The output and requirements determine how the other components should be
- The other components are not always as they should:
 - If you can, get the right components
 - If you can't change a component, compensate with another one you control

- The output is a deployed software solution:
 - Solution working in production conditions
 - In use (by end-users)
 - Documentation (the ugly stepsister of implementation)
- The key requirements for this output:
 - Impact on the business
 - Features and functions
 - Cost and schedule

- The key input is the software itself
- Key things to consider are:
 - Features and functions (current and planned)
 - Stability and product maturity
 - Complexity of implementation/configuration
 - Ease of use
 - Ease of integration
 - Field readiness (documentation, training material, etc.)

- Other inputs for this process are:
 - Users. Key things to consider:
 - Availability to participate in the project
 - Computer literacy
 - Business knowledge
 - Data for setup, testing and production
 - Pre-project documentation (handover)
 - Base Technology

- Methods are:
 - Project Management Life Cycle Methodology
 - Implementation Methodology specific to the solution (Project Life Cycle):
 - Process definition: steps, sequence and dependencies
 - Roles and responsibilities for each step in the process
 - Tools, templates and guides for each step in the process

Human Resources are your project team

- Human Resources: Things to consider:
 - Expertise with the application
 - Consulting Experience
 - Technical background/expertise
 - Business knowledge on area of application
- Organizational complexity:
 - Location of resources and customer
 - Reporting structure
 - Subcontractor/partner agreements

- Infrastructure as resources for the project:
 - Facilities, office space, location
 - Test/QA environment
 - Communications

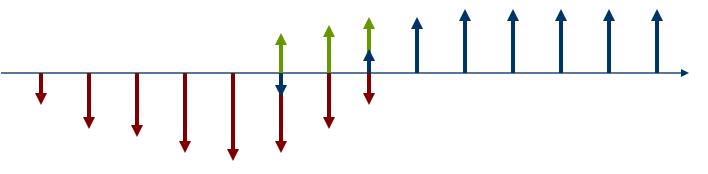
Measurement:

- For the process of implementation
 - Cost performance
 - Time performance
 - Earned Value Management integrates both
 - Change requests, testing results, other.
- For the output of the process
 - NPV for impact on the business
 - Verification of features and functions

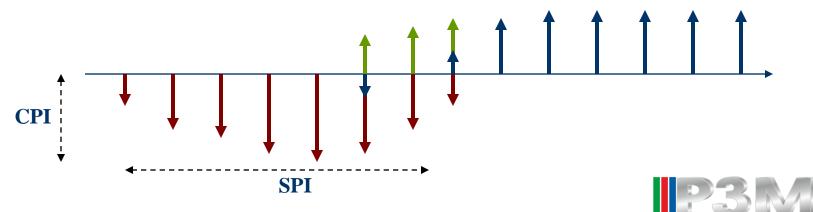
Project Environment:

- Customer's organization
 - Strategic direction
 - Concurrent initiatives
 - Other applications that will be integrated to the solution
- Vendor's organization
 - Process maturity
 - Relative importance of the product and project
 - Resource availability

- How to use the model:
 - Define, refine and document output and requirements
 - Verify other elements in the model:
 - Are they capable of producing the output and meeting the requirements
 - If they are not capable, can I replace them?
 - If I can't replace them, compensate with other elements
 - Review output and requirements and repeat until the process is capable


- Requirements: the most important step
 - If requirements are not clearly understood, there is no chance of success
 - Back to the Chaos Report:
 - The three major reasons for project success:
 - User involvement
 - Executive management support
 - Clear statement of requirements
 - The three reasons can be tied back to requirements

- Requirements: User involvement
 - Select the right users:
 - Business knowledge
 - Opinion leaders
 - Represent areas impacted by the solution
 - Train them early in the project (sell the solution)
 - Define requirements:
 - Define future business processes and rules
 - Define requirements, not solutions
 - Requirements should be verifiable (base for test plans)



- Requirements: impact to the business should be expressed in terms of financial value:
 - Expected cost savings plus
 - margin on additional revenue compared to
 - planned investment

- Financial Value is what keeps the sponsor interested and committed to the project
- Project measurement should be "translated" to financial value through EVM

- Requirements: Best option is an initial engagement:
 - Define business processes and rules
 - Define and document requirements
 - Review NPV (allows for better pricing/negotiation)
 - Define plan for implementation (design a process that is capable of meeting requirements)
 - Initial engagement could be followed by a pilot
- Second best option: insert a baseline review after requirements signoff

- Requirements: Once agreed, documented and signed off, apply strict change management:
 - Requirement changes are key measurement of process control and organizational maturity
 - Relate change requests to impact on the business
 - If change is approved:
 - Review the baseline for proper EVM
 - Adjust the NPV (could be positive)

- Assess the Capability of your Application:
 - Features and Functions:
 - Current and already planned
 - Room for enhancements or new functionality
 - Define project phases if possible
 - Ease of implementation VS team resources
 - Ease of use VS end users

Ease of implementation VS Team Resources

Application Complexity	High	High Risk Detailed Methods Training/Mentoring Product Docs. Extensive testing Independent review	Medium Risk Product Docs. Extensive testing
	Low	Medium Risk Defined Methods Training/mentoring Testing.	Low Risk Project Management Verification of deliverables
		Low	High
		Expertise of Team Resources	

Ease of use VS Capabilities of End-users

Application Ease of use	Complex	High Risk Training Documentation Motivation for use Change Mgt.	Medium Risk Documentation Training.
	Easy	Medium Risk Training Documentation	Low Risk Verification of use
		Low	High
		Capabilities of End-users	

Conclusions

- Odds are not good
- But your project doesn't have to fail
- Clear requirements, the key factor
- Process capability a valuable tool to increase your odds of success

